Search results for " Mean-field games"

showing 6 items of 6 documents

Opinion Dynamics and Stubbornness via Multi-Population Mean-Field Games

2016

This paper studies opinion dynamics for a set of heterogeneous populations of individuals pursuing two conflicting goals: to seek consensus and to be coherent with their initial opinions. The multi-population game under investigation is characterized by (i) rational agents who behave strategically, (ii) heterogeneous populations, and (iii) opinions evolving in response to local interactions. The main contribution of this paper is to encompass all of these aspects under the unified framework of mean-field game theory. We show that, assuming initial Gaussian density functions and affine control policies, the Fokker---Planck---Kolmogorov equation preserves Gaussianity over time. This fact is t…

0209 industrial biotechnologyMathematical optimizationConsensusControl and OptimizationHeterogeneous populationsPopulationOpinion dynamics Consensus Heterogeneous populations Stubbornness Mean-field games02 engineering and technologyMean-field gamesManagement Science and Operations Research01 natural sciences020901 industrial engineering & automationSettore ING-INF/04 - AutomaticaStubbornness0101 mathematicseducationSet (psychology)Opinion dynamicsFinite setMathematicseducation.field_of_studyStochastic processApplied MathematicsOpinion dynamics Consensus Heterogeneous populations Stubbornness Mean-field gamesRational agentOptimal control010101 applied mathematicsTheory of computationSettore MAT/09 - Ricerca OperativaGame theory
researchProduct

Game Theoretic Decentralized Feedback Controls in Markov Jump Processes

2017

This paper studies a decentralized routing problem over a network, using the paradigm of mean-field games with large number of players. Building on a state-space extension technique, we turn the problem into an optimal control one for each single player. The main contribution is an explicit expression of the optimal decentralized control which guarantees the convergence both to local and to global equilibrium points. Furthermore, we study the stability of the system also in the presence of a delay which we model using an hysteresis operator. As a result of the hysteresis, we prove existence of multiple equilibrium points and analyze convergence conditions. The stability of the system is ill…

0209 industrial biotechnologyMathematical optimizationDecentralized routing policies; Hysteresis; Inverse control problem; Mean-field games; Optimal control; Control and Optimization; Management Science and Operations Research; Applied MathematicsControl and OptimizationStability (learning theory)02 engineering and technologyManagement Science and Operations ResearchMean-field games01 natural sciencesDecentralized routing policie020901 industrial engineering & automationControl theorySettore MAT/05 - Analisi MatematicaMean-field gameConvergence (routing)0101 mathematicsMean field gamesMathematicsEquilibrium pointSettore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e FinanziarieDecentralized routing policies; Hysteresis; Inverse control problem; Mean-field games; Optimal controlApplied MathematicsHysteresis010102 general mathematics[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Optimal controlOptimal control Mean-field games Inverse control problem Decentralized routing policies HysteresisDecentralised systemOptimal control Mean-field games Inverse control problem Decentralized routing policies HysteresisExpression (mathematics)Optimal controlTheory of computationDecentralized routing policiesHysteresiInverse control problemRouting (electronic design automation)Settore MAT/09 - Ricerca Operativa
researchProduct

Crowd-Averse Robust Mean-Field Games: Approximation via State Space Extension

2016

We consider a population of dynamic agents, also referred to as players. The state of each player evolves according to a linear stochastic differential equation driven by a Brownian motion and under the influence of a control and an adversarial disturbance. Every player minimizes a cost functional which involves quadratic terms on state and control plus a cross-coupling mean-field term measuring the congestion resulting from the collective behavior, which motivates the term “crowd-averse.” Motivations for this model are analyzed and discussed in three main contexts: a stock market application, a production engineering example, and a dynamic demand management problem in power systems. For th…

0209 industrial biotechnologyStochastic stabilityMathematical optimizationCollective behaviorTechnologyComputer sciencePopulationcontrol designcrowd-averse robust mean-field games state space extension dynamic agents linear stochastic differential equation Brownian motion adversarial disturbance cost functional cross-coupling mean-field term collective behavior stock market application production engineering example dynamic demand management problem robust mean-field game approximation error stochastic stability microscopic dynamics macroscopic dynamicscontrol engineering02 engineering and technology01 natural sciencesStochastic differential equationoptimal control020901 industrial engineering & automationQuadratic equationAutomation & Control SystemsEngineeringClosed loop systemsSettore ING-INF/04 - AutomaticaApproximation errorRobustness (computer science)Control theory0102 Applied MathematicsState space0101 mathematicsElectrical and Electronic EngineeringeducationBrownian motioneducation.field_of_studyScience & TechnologyStochastic process010102 general mathematicsRelaxation (iterative method)Engineering Electrical & ElectronicOptimal controlComputer Science Applications0906 Electrical and Electronic EngineeringIndustrial Engineering & AutomationMean field theoryControl and Systems EngineeringSettore MAT/09 - Ricerca Operativa0913 Mechanical Engineering
researchProduct

Consensus via multi-population robust mean-field games

2017

In less prescriptive environments where individuals are told ‘what to do’\ud but not ‘how to do’, synchronization can be a byproduct of strategic thinking,\ud prediction, and local interactions. We prove this in the context of multipopulation\ud robust mean-field games. The model sheds light on a multi-scale\ud phenomenon involving fast synchronization within the same population and\ud slow inter-cluster oscillation between different populations.

0209 industrial biotechnologyTheoretical computer scienceGeneral Computer ScienceComputer scienceDistributed computingPopulationConsensuContext (language use)02 engineering and technologySynchronizationMean-field games01 natural sciences020901 industrial engineering & automationPhenomenonSynchronization (computer science)Oscillation (cell signaling)0101 mathematicsElectrical and Electronic Engineeringeducationeducation.field_of_studySynchronization; Consensus; Mean-field gamesStrategic thinkingMechanical Engineering010102 general mathematicsMean field theoryControl and Systems EngineeringMulti populationSettore MAT/09 - Ricerca OperativaSystems & Control Letters
researchProduct

Crowd-Averse Cyber-Physical Systems: The Paradigm of Robust Mean-Field Games

2016

For a networked controlled system, we illustrate the paradigm of robust mean-field games. This is a modeling framework at the interface of differential game theory, mathematical physics, and $H_{\infty}$ - optimal control that tries to capture the mutual influence between a crowd and its individuals. First, we establish a mean-field system for such games including the effects of adversarial disturbances. Second, we identify the optimal response of the individuals for a given population behavior. Third, we provide an analysis of equilibria and their stability.

Computer Science::Computer Science and Game Theory0209 industrial biotechnologyTheoretical computer scienceComputer scienceInterface (computing)PopulationStability (learning theory)02 engineering and technology01 natural sciencesAdversarial system020901 industrial engineering & automationSettore ING-INF/04 - AutomaticaControl theoryRobustness (computer science)Differential game0101 mathematicsElectrical and Electronic Engineeringcrowd-averse cyber-physical systems robust mean-field games paradigm networked control system differential game theory mathematical physics H∞-optimal control mean-field system adversarial disturbance effecteducationeducation.field_of_studyCyber-physical systemOptimal controlComputer Science Applications010101 applied mathematicsControl and Systems EngineeringSettore MAT/09 - Ricerca OperativaIEEE Transactions on Automatic Control
researchProduct

Mean-Field Game Modeling the Bandwagon Effect with Activation Costs

2015

This paper provides a mean-field game theoretic model of the bandwagon effect in social networks. This effect can be observed whenever individuals tend to align their own opinions to a mainstream opinion. The contribution is threefold. First, we describe the opinion propagation as a mean-field game with local interactions. Second, we establish mean-field equilibrium strategies in the case where the mainstream opinion is constant. Such strategies are shown to have a threshold structure. Third, we extend the use of threshold strategies to the case of time-varying mainstream opinion and study the evolution of the macroscopic system.

Physics::Physics and SocietyStatistics and Probability0209 industrial biotechnologyEconomics and Econometrics02 engineering and technologyMean-field gamesMean field gameActivation costs; Bandwagon effect; Games with infinitely many players; Mean-field games; Mode; Threshold policies;01 natural sciencesActivation costs010305 fluids & plasmasMicroeconomics020901 industrial engineering & automationOpinion dynamicsGames with infinitely many players; Bandwagon effect; Activation costs; Threshold policies; Mean-field games; ModeMean-field game0103 physical sciencesEconomicsThreshold policiesMainstreamBandwagon effectStructure (mathematical logic)Game theoreticApplied MathematicsMode (statistics)Computer Science::Social and Information NetworksComputer Graphics and Computer-Aided DesignComputer Science ApplicationsComputational MathematicsActivation costComputational Theory and MathematicsGames with infinitely many playersGames with infinitely many playerModeSettore MAT/09 - Ricerca OperativaConstant (mathematics)Threshold policieMathematical economicsBandwagon effectDynamic Games and Applications
researchProduct